更新时间:2024-07-24 13:40:09
封面
版权信息
作者简介
内容简介
推荐序一
推荐序二
推荐序三
前言
第1章 AI与大模型时代对基础架构的需求
1.1 我们在谈论AI时,到底在谈论什么
1.2 机器学习算法初窥
1.3 一元线性回归算法剖析
1.4 机器学习算法对计算机硬件的特殊需求
1.4.1 机器学习算法的核心运算特征
1.4.2 使用CPU实现机器学习算法和并行加速
1.4.3 机器学习算法的主力引擎——GPU
1.4.4 机器学习算法的新引擎——TPU和NPU
1.5 本章小结
第2章 软件程序与专用硬件的结合
2.1 GPU并行运算库
2.2 机器学习程序的开发框架
2.3 分布式AI训练
2.4 本章小结
第3章 GPU硬件架构剖析
3.1 GPU的总体设计
3.2 Nvidia GH100芯片架构剖析
3.3 其他Hopper架构的GPU
3.4 本章小结
第4章 GPU服务器的设计与实现
4.1 初识Nvidia DGX
4.2 Nvidia DGX A100的总体设计
4.3 Nvidia DGX A100 CPU与内存子系统的设计
4.4 Nvidia DGX A100 PCI-E子系统的设计
4.5 Nvidia DGX A100 NVLink子系统的设计
4.6 其他辅助子系统的设计
4.7 本章小结
第5章 机器学习所依托的I/O框架体系
5.1 Magnum IO的需求来源
5.2 Magnum IO的核心组件
5.3 服务器内部的GPU互通
5.4 跨服务器节点的GPU通信
5.5 RDMA的两种实现
5.6 GPU对存储的访问
5.7 Magnum IO所依赖的其他支撑技术
5.7.1 DPDK(Data Plane Development Kit,数据平面开发套件)
5.7.2 DPU(Data Processing Unit,数据处理器)
5.7.3 MPI Tag Matching
5.8 本章小结
第6章 GPU集群的网络设计与实现
6.1 GPU集群中RoCE计算网络的设计与实现
6.2 GPU集群中存储与业务网络的设计与实现
6.3 GPU集群中带外管理监控网络的设计与实现
6.4 GPU集群中网络边界的设计与实现
6.5 本章小结
第7章 GPU板卡级算力调度技术
7.1 基于虚拟化技术的GPU调度
7.2 基于容器技术的GPU调度
7.3 本章小结
第8章 GPU虚拟化调度方案
8.1 Nvidia的GPU虚拟化调度方案
8.1.1 API Remoting与vCUDA
8.1.2 GRID vGPU
8.1.3 Nvidia MIG
8.2 其他硬件厂商的GPU虚拟化调度方案
8.2.1 AMD的SRIOV方案
8.2.2 Intel的GVT-G方案
8.3 云厂商与开源社区基于容器的GPU虚拟化调度方案
8.3.1 TKE vCUDA+GPU Manager
8.3.2 阿里云的cGPU
8.3.3 腾讯云的qGPU
8.4 本章小结
第9章 GPU集群的网络虚拟化设计与实现
9.1 基于SDN的VPC技术:网络虚拟化技术的基石
9.2 云负载均衡:机器学习网络的中流砥柱
9.3 专线接入、对等连接与VPC网关
9.4 SDN NFV网关的实现与部署
9.4.1 基于virtio-net/vhost的虚拟机部署NFV
9.4.2 基于SRIOV的虚拟机部署NFV
9.4.3 使用DPDK技术对NFV加速
9.5 本章小结
第10章 GPU集群的存储设计与实现
10.1 程序与系统存储——分布式块存储
10.1.1 块存储的业务需求
10.1.2 集中式块存储与分布式块存储
10.1.3 分布式块存储的故障恢复
10.1.4 分布式块存储的性能优化
10.1.5 分布式块存储的快照与回滚
10.2 海量非结构化数据存储——分布式对象存储
10.2.1 入门级对象存储的首选:Ceph
10.2.2 开源海量对象存储:Swift
10.2.3 商业化对象存储:大型公有云对象存储私有化
10.2.4 未来之星:MinIO
10.3 AI训练素材存储——分布式并发高性能存储
10.3.1 开源大数据存储鼻祖:HDFS
10.3.2 业界对HDFS的改进
10.3.3 长青松柏:Lustre
10.4 本章小结
第11章 机器学习应用开发与运行平台的设计与实现
11.1 微服务平台
11.1.1 Kubernetes:微服务基础能力平台